140 research outputs found

    Numerical analysis of the influence of design parameters on the efficiency of an OWC axial impulse turbine for wave energy conversion

    Get PDF
    Oscillating water column (OWC) axial impulse turbines permit the conversion of wave energy into electrical power. Unlike other hydropower units with a mature and well established technology, such turbines have been recently developed, there are still few prototypes operating and therefore there is a large space for optimizing its design. Many recent studies focus on the improvement of the efficiency and transient characteristics by means of experimentation and also simulation techniques. In the present paper we use a 3D numerical simulation model (computational fluid dynamics model with ANSYS-Fluent 18) to analyze the influence of different geometrical parameters on the efficiency of the turbine, which have been less discussed yet. A reference configuration case has been used to validate our simulation model by comparing it with previous experimental results. Then, parametric variations in the guide vane number and type, gaps between the rotating and stationary part and hub to tip ratio have been introduced in the model to discuss the influence of these effects. It is found that some of these parameters have an important influence on the efficiency of the turbine and therefore, the results presented in this paper can help to optimize future designs of OWC impulse turbinesPostprint (author's final draft

    Overview of the experimental tests in prototype

    Get PDF
    Experimental tests in prototype are necessary to understand the dynamic behaviour of the machine during different operating points. Hydraulic phenomena as well as its effect on the structure need to be studied in o rder to avoid instabilities during operation and to extend the life - time of the different components. For this purpose, a complete experimental study of a large Francis turbine prototype has been performed installing several sensors along the machine. Pres sure sensors were installed in the penstock, spiral case, runner and draft tube, strain gauges were installed in the runner, vibration sensors were used in the stationary parts and different electrical and operational parameters were also measured. All the se signals were acquired simultaneously for different operating points of the turbine.Postprint (published version

    Detection of hydraulic phenomena in francis turbines with different sensors

    Get PDF
    Nowadays, hydropower is demanded to provide flexibility and fast response into the electrical grid in order to compensate the non-constant electricity generation of other renewable sources. Hydraulic turbines are therefore demanded to work under o -design conditions more frequently, where di erent complex hydraulic phenomena appear, a ecting the machine stability as well as reducing the useful life of its components. Hence, it is desirable to detect in real-time these hydraulic phenomena to assess the operation of the machine. In this paper, a large medium-head Francis turbine was selected for this purpose. This prototype is instrumented with several sensors such as accelerometers, proximity probes, strain gauges, pressure sensors and a microphone. Results presented in this paper permit knowing which hydraulic phenomenon is detected with every sensor and which signal analysis technique is necessary to use. With this information, monitoring systems can be optimized with the most convenient sensors, locations and signal analysis techniquesPostprint (published version

    Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends

    Get PDF
    Due to the massive entrance of new renewable energies such as wind or solar, hydraulic turbines have to work far from its designed point and withstanding multiple transients, such as starts and stops, that shorten the useful life of the machine and cause fatigue damages. The present paper reviews the complex problem of fatigue in Francis turbines particularly focused on the experimental data available for static and dynamic stresses. For this purpose, many researches, which include different Francis turbines covering a wide range of design head and power, have been considered. The experimental stresses characteristics measured with strain gauges installed on the turbine runner and obtained from previous works have been analyzed for the different operating conditions and transient states occurring in the normal life of actual Francis units. The actual computational capabilities and techniques typically used to estimate such stresses have been discussed in detail. Potential future techniques to simplify complex strain measurements on the turbine runner, computational and statistical methods to estimate turbine stresses are reviewed in this paper. Finally, the relative damage of the different operating conditions and useful life estimation of the turbine, based on past strain measurements of the runner, are addressed.Postprint (author's final draft

    Sensor-based optimized control of the full load instability in large hydraulic turbines

    Get PDF
    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.Postprint (published version

    Experimental measurements of the natural frequencies and mode shapes of rotating disk-blades-disk assemblies from the stationary frame

    Get PDF
    Determining the natural frequencies and mode shapes of rotating turbomachinery components from both rotating and stationary reference frames is of paramount importance to avoid resonance problems that could affect the normal operation of the machine, or even cause critical damages in these components. Due to their similarity to real engineering cases, this topic has been experimentally analyzed in the past for disk-shaft assemblies and rotor disk-blades assemblies (bladed-disk or blisk). The same topic is less analyzed for disk-blades-disk assemblies, although such configurations are widely used in centrifugal closed impellers of compressors, hydraulic pumps, pump-turbines, and runners of high head Francis turbines. In this paper, experimental measurements, varying the rotating speed of a disk-blade-disk assembly and exciting the first natural frequencies of the rotating frame, have been performed. The rotating structure is excited and measured by means of PZT patches from the rotating frame and with a Laser Doppler Vibrometer (LDV). In order to interpret the experimental results obtained from the stationary frame, a method to decompose the diametrical mode shapes of the structure in simple diametrical components (which define the diametrical mode shapes of a simple disk) has been proposed. It is concluded that the resonant frequencies detected with a stationary sensor correspond to the ones predicted with the decomposition method. Finally, a means to obtain equivalent results with numerical simulation methods is shown.Postprint (published version

    Influence of the boundary conditions on the natural frequencies of a Francis turbine

    Get PDF
    Natural frequencies estimation of Francis turbines is of paramount importance in the stage of design in order to avoid vibration and resonance problems especially during transient events. Francis turbine runners are submerged in water and confined with small axial and radial gaps which considerably decrease their natural frequencies in comparison to the same structure in the air. Acoustic-structural FSI simulations have been used to evaluate the influence of these gaps. This model considers an entire prototype of a Francis turbine, including generator, shaft, runner and surrounding water. The radial gap between the runner and the static parts has been changed from the real configuration (about 0.04% the runner diameter) to 1% of the runner diameter to evaluate its influence on the machine natural frequencies. Mode-shapes and natural frequencies of the whole machine are discussed for all the boundary conditions testedPostprint (published version

    Condition monitoring of a prototype turbine. Description of the system and main results

    Get PDF
    The fast change in new renewable energy is affecting directly the required operating range of hydropower plants. According to the present demand of electricity, it is necessary to generate different levels of power. Because of its ease to regulate and its huge storage capacity of energy, hydropower is the unique energy source that can adapt to the demand. Today, the required operating range of turbine units is expected to extend from part load to overload. These extreme operations points can cause several pressure pulsations, cavitation and vibrations in different parts of the machine. To determine the effects on the machine, vibration measurements are necessary in actual machines. Vibrations can be used for machinery protection and to identify problems in the machine (diagnosis). In this paper, some results obtained in a hydropower plant are presented. The variation of global levels and vibratory signatures has been analysed as function as gross head, transducer location and operating points.Postprint (published version

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    Response of Saos-2 osteoblast-like cells to kilohertz-resonance excitation in porous metallic scaffolds

    Get PDF
    Post-operative therapy for joint replacement is often performed to optimize bone volume and bone-implant contact. Methods, such as pulsed therapeutic ultrasound, have been shown to be a valuable addition to regular physiotherapy to increase bone regeneration. To evaluate the efficacy of kilohertz-frequency (kHz) resonant stimuli to additively manufactured implant analogues, Saos-2 cells were seeded onto porous stainless steel scaffolds and flat substrates. Resonant frequency modes were mapped in the low kHz range, and cells were subjected to daily stimulus for 10 min at a frequency of 1.278 kHz. kHz-frequency excitation was found to increase normalized alkaline phosphatase production by almost twofold on metallic substrates relative to non-vibrated control scaffolds, while peak velocity influenced alkaline phosphatase production on porous scaffolds but not flat substrates. Total cell proliferation was downregulated by excitation, and all excited samples displayed larger variability. This work indicates that vibration within the range of 0.16–0.48 mm/s may reduce cell proliferation, but favour osteogenic gene expression. This study highlights the potential of using kHz-resonance therapy to mitigate early-onset pore occlusion to achieve uniform osseointegration through porous metallic scaffolds.Postprint (author's final draft
    • …
    corecore